

# Nuclear Data Adjustment with Whisper for Criticality Safety **Applications**

Michael E. Rising, Jennifer L. Alwin, Alexander R. Clark, Robbie MacQuigg, and Bobbi Riedel

**2022 WANDA** February 28 – March 4, 2022

LA-UR-22-21216



### **Nuclear Criticality Safety**

- Nuclear data adjustment supports both criticality safety and reactor analysis/design.
- In criticality safety, adjustment has the potential to eliminate conservatism in analysis, but it is dependent on the existence of a large collection of benchmarks that exercise the related data.
  - An example of the effect of the benchmark collection in a specific criticality safety application analysis is shown in the upcoming slides.

### <u>Acknowledgements</u>

This work was supported by the DOE Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy.



## What is Whisper?

 Statistical analysis code using sensitivity/uncertainty-based methods to determine baseline upper subcritical limit (USL) for nuclear criticality safety



Steps performed by Whisper:

- Benchmark selection
- 2. Compute bias and bias uncertainty
- 3. Estimate additional margin of subcriticality



### Whisper Use of Nuclear Data Adjustment

- Step 3 includes computing margin of subcriticality due to nuclear data.
- Using GLLS, we adjust the nuclear data to the entire collection of benchmarks and use the adjusted nuclear data covariance to estimate residual uncertainties from nuclear data.



- Real Bias is the difference between simulation and experiment
- GLLSM Bias is the difference between the prior and posterior simulation
- The difference in these could be considered the *residual uncertainty*



### **Example Use of Nuclear Data Adjustment in Whisper**

#### Application **similar** to benchmark suite

Bare plutonium application

| Whisper Outputs                     | Value (pcm) |
|-------------------------------------|-------------|
| Bias                                | 690         |
| Bias Uncertainty                    | 693         |
| ND Uncertainty<br>(Prior) MOS       | 1,375       |
| ND Uncertainty<br>(Posterior) MOS   | 59          |
| ND Uncertainty<br>Reduction w/ GLLS | ~95%        |

<sup>239</sup>Pu Accounts for 94% of Prior Unc.

<sup>239</sup>Pu Posterior Unc. ↓ ~95%

#### Application **dissimilar** to benchmark suite

Plutonium reflected by tantalum

| Whisper Outputs                   | Value (pcm) |
|-----------------------------------|-------------|
| Bias                              | 877         |
| Bias Uncertainty                  | 911         |
| ND Uncertainty<br>(Prior) MOS     | 3,133       |
| ND Uncertainty<br>(Posterior) MOS | 1,454       |
| ND Uncertainty Reduction w/ GLLS  | ~53%        |

| <sup>239</sup> Pu Accounts for 33% of Prior Unc. |
|--------------------------------------------------|
| <sup>181</sup> Ta Accounts for 67% of Prior Unc. |
| <sup>239</sup> Pu Posterior<br>Unc. ↓ ~95%       |
| <sup>181</sup> Ta Posterior                      |

Unc. ↓ ~48%



## Takeaways from Bare Pu vs. Ta-reflected Pu Examples

- Compared to the hundreds of benchmarks with <sup>239</sup>Pu, only 7 benchmarks in the Whisper library contain <sup>181</sup>Ta (all within PMF-045 series)
- Therefore, <sup>181</sup>Ta adjusted cross section uncertainties are not constrained like the <sup>239</sup>Pu adjusted cross section uncertainties because:
  - So few (and similar) benchmarks used within the context of GLLS,
  - The sensitivities of the application differ from those of the benchmarks



### **Conclusions**

- Nuclear data adjustment is used by Whisper to compute residual nuclear data uncertainties within a full suite of benchmarks
  - Requires a complete set of nuclear data covariances, benchmarks and k-effective sensitivity profiles (for both benchmarks and applications)
- For applications that are similar to the full benchmark suite, the residual uncertainties add a small margin to the overall USL calculation
- For applications that are dissimilar to the full benchmark suite, the residual uncertainties add a reasonable margin to the overall USL calculation (more conservative)
- This methodology helps to overcome any issues in the released covariance libraries where nuclear data uncertainties appear to be too large



## Questions?

Contact: mrising@lanl.gov



## **Example Use of Nuclear Data Adjustment in Whisper**

#### Application **similar** to benchmark suite

Bare plutonium application

| ND Source of<br>Uncertainty   | Prior<br>(pcm) | Posterior<br>(pcm) |
|-------------------------------|----------------|--------------------|
| $^{239}$ Pu, $\bar{ u}$       | 1,229          | 372                |
| <sup>239</sup> Pu (inelastic) | 824            | 372                |
| <sup>239</sup> Pu (elastic)   | 479            | 284                |
| <sup>239</sup> Pu (n,f)       | 351            | 338                |
| <sup>239</sup> Pu, χ          | 299            | 99                 |
| <sup>239</sup> Pu (n,γ)       | 73             | 70                 |

#### Application **dissimilar** to benchmark suite

Plutonium reflected by tantalum

| ND Source of<br>Uncertainty       | Prior<br>(pcm) | Posterior<br>(pcm) |
|-----------------------------------|----------------|--------------------|
| <sup>239</sup> Pu ( $\bar{\nu}$ ) | 1,245          | 370                |
| <sup>239</sup> Pu (inelastic)     | 574            | 242                |
| <sup>239</sup> Pu (elastic)       | 257            | 148                |
| <sup>239</sup> Pu (n,f)           | 351            | 337                |
| <sup>239</sup> Pu ( <i>χ</i> )    | 230            | 76                 |
| <sup>239</sup> Pu (n,γ)           | 100            | 94                 |
| <sup>181</sup> Ta (inelastic)     | 2,680          | 1,548              |
| <sup>181</sup> Ta (elastic)       | 841            | 818                |
| $^{181}$ Ta (n, $\gamma$ )        | 261            | 259                |

